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Abstract 

Background: Regulatory monitoring data have been the exposure data resource most commonly 

applied to studies of the association between long-term PM2.5 components and health. However, 

data collected for regulatory purposes may not be compatible with epidemiological studies.   

Objectives: We studied three important features of the PM2.5 component monitoring data in 

order to determine whether it would be appropriate to combine all available data from multiple 

sources for developing spatio-temporal prediction models in the National Particle Component 

and Toxicity (NPACT) study. 

Methods: The NPACT monitoring data were collected in an extensive monitoring campaign 

targeting cohort participant residences. The regulatory monitoring data were obtained from the 

Chemical Speciation Network (CSN) and the Interagency Monitoring of Protected Visual 

Environments (IMPROVE). We performed exploratory analyses to examine features that could 

affect our approach to combining data: comprehensiveness of spatial coverage, comparability of 

analysis methods, and consistency in sampling protocols. In addition, we considered the viability 

of developing spatio-temporal prediction models given: 1) all available data; 2) NPACT data 

only; and 3) NPACT data with temporal trends estimated from other pollutants. 

Results: The number of CSN/IMPROVE monitors was limited in all study areas. The different 

laboratory analysis methods and sampling protocols resulted in incompatible measurements 

between networks. Given these features we determined that it was preferable to develop our 

spatio-temporal models using only the NPACT data and under simplifying assumptions.   

Conclusions: Investigators conducting epidemiological studies of long-term PM2.5 components 

need to be mindful of the features of the monitoring data and incorporate this understanding into 
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the design of their monitoring campaigns and the development of their exposure prediction 

models.  
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 Introduction 

Evidence of the association between long-term exposure to ambient PM2.5 and human health 

continues to accumulate (Laden et al. 2006; Miller et al. 2007; Pope et al. 2002; Pope et al. 2004; 

Puett et al. 2009) and has spurred research into understanding the role of specific PM2.5 chemical 

components (Mauderly and Chow 2008; Ostro et al. 2010; Ostro et al. 2011 [erratum]; 

Schlesinger 2007; Vedal et al. 2013). Recent cohort studies have relied on predictions of long-

term average PM2.5 concentrations at participant homes based on models developed from 

monitoring data (Eeftens et al. 2012; Paciorek et al. 2009; Sampson et al. 2011; Sampson et al. 

2013; Szpiro et al. 2010; Yanosky et al. 2009). A few additional studies have used this approach 

to estimate the health effects of PM2.5 components (Bergen et al. 2013; de Hoogh et al. 2013).  

Parallel research in the statistics literature suggests that features of the monitoring data can affect 

the quality of the prediction models (Diggle et al. 2010; Gelfand et al. 2012) and the resulting 

health effect estimates (Szpiro et al. 2011; Szpiro and Paciorek 2013). Regulatory monitoring 

data collected and managed by government agencies are a common and useful resource for 

epidemiological applications. For the study of health effects of PM2.5 chemical components in 

the U.S., most studies have used data from two networks: the U.S. Environmental Protection 

Agency (EPA) Chemical Speciation Network (CSN) and the Interagency Monitoring of 

Protected Visual Environment (IMPROVE) sponsored by EPA and other agencies (Bergen et al. 

2013; Ostro et al. 2010; Pope et al. 2002). However, because these monitoring networks were 

designed for regulatory purposes, they may not be suited to some epidemiological applications.  

The University of Washington National Particle Component and Toxicity (NPACT) study was 

designed to investigate the associations between long-term exposure to PM2.5 chemical 
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components and cardiovascular health partly based on the Multi-Ethnic Study of Atherosclerosis 

(MESA) cohort. NPACT collected PM2.5 component concentrations in the framework of an 

extensive cohort-focused monitoring campaign of the MESA and Air Pollution (MESA Air) 

study to capture fine-scale spatial variability at the residences of the MESA/MESA Air study 

cohort. This spatially-resolved monitoring may be particularly meaningful for understanding 

PM2.5 components since many are largely affected by local sources. It will also enhance our 

ability to characterize within-community spatial variability in our exposure prediction models. In 

the original plan, the NPACT monitoring data were intended to be combined with regulatory 

monitoring data in exposure prediction models, similar to the approach used previously for 

predicting PM2.5 (Keller et al. 2014; Paciorek et al. 2009; Sampson et al. 2011; Yanosky et al. 

2009). In order to meet this objective, we first needed to assess various features of the PM2.5 

component data in order to ensure they could be combined in prediction modeling.  

This paper compares and contrasts the compatibility of the CSN and IMPROVE regulatory 

monitoring network data with the NPACT monitoring data within the context of the NPACT 

study goals. In particular, we discuss the spatial coverage of exposure monitoring, the filter 

analysis methods, and the sampling protocols. NPACT analyses focused on four primary 

pollutants: elemental and organic carbon (EC and OC), silicon, and sulfur as markers for 

combustion sources, crustal dust, and inorganic aerosol, respectively. Here we restrict our 

attention to EC and silicon, as these pollutants have been associated with adverse health 

outcomes (Ostro et al. 2011; Vedal et al. 2013) and they allow us to highlight similarities and 

differences in the features we compare.   
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Methods 

Population 

The NPACT study was based on the subjects who were originally recruited in MESA and 

consented to MESA Air or who were directly enrolled in MESA Air. The cohort includes 

approximately 7,000 participants residing in six U.S. metropolitan areas: Baltimore, Chicago, 

Los Angeles, Minneapolis-St. Paul, New York, and Winston-Salem (Bild et al. 2002; Kaufman 

et al. 2012).  

Data 

National Particle Component and Toxicity (NPACT) monitoring data 

To characterize spatial variability of exposures across participant residences, the NPACT study 

expanded the MESA Air exposure monitoring campaign to also measure PM2.5 components 

(Vedal et al. 2013). The MESA Air campaign focused on measuring PM2.5 mass and gaseous 

pollutant concentrations. In each city the campaign included three to seven fixed NPACT sites 

measuring pollutants in 2-week samples over multiple years, and approximately 50 rotating 

home-outdoor sites that each provided one to three 2-week samples (average of 1.8 samples) 

(Cohen et al. 2009). One fixed NPACT site was co-located with one CSN site in each city. 

Whereas the NPACT sampling for trace elements was carried out over four years (August 2005 

through August 2009), carbon data were collected over 18 months (March 2007 through August 

2008). Two-week samples for trace elements and carbon were collected on Teflon and quartz 

filters, respectively, in Harvard Personal Environmental Monitors (HPEMs) with a 2.5 µm cut 

size and pump flow rate of 1.8 L/min. PM2.5 components were quantified in EPA-certified labs 

using analysis methods consistent with those currently employed in the CSN and IMPROVE 
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networks as described in detail in Vedal et al. (2013). In brief, trace elements were quantified 

using X-ray Fluorescence (XRF) (Cooper Environmental Services, Portland, Oregon). EC and 

OC were blank-corrected and quantified using the IMPROVE_A Total Optical Reflectance 

(TOR) method (Sunset Laboratory Inc., Tigard, Oregon). In addition, the NPACT study carried 

out comprehensive quality assurance and control procedures to minimize errors from field 

activities and lab analyses.  

Regulatory monitoring data 

The CSN and IMPROVE networks have collected 24-hour average samples of PM2.5 

components across the U.S. every 3rd or 6th day since 2000 and 1988, respectively (Hand et al. 

2011; Rao et al. 2003; U.S. EPA 2004; U.S. EPA 2005a). Monitoring sites in CSN are mostly 

located in urban areas to identify and control potential sources of PM2.5, whereas IMPROVE 

sites are largely deployed in rural areas to assess and regulate visibility (Hand et al. 2011; U.S. 

EPA 2004). From the more than 300 monitoring sites in both networks combined, we selected 

the 99 monitoring sites within 200 kilometers of the centers of the six MESA city regions, and 

downloaded from the EPA Air Quality System (AQS) database all measurements collected 

between 1999 and 2009. We began with 1999 because it is one year prior to the baseline 

screening of MESA participants. In CSN and IMPROVE, PM2.5 components were sampled by 

compliance samplers (U.S. EPA 1998). The two networks measured trace elements by XRF, 

including silicon and sulfur. In the CSN network, EC and OC were measured by the National 

Institute for Occupational Safety and Health (NIOSH) Total Optical Transmittance (TOT) or 

IMPROVE_A TOR method (without blank correction for both methods).  In contrast, 

IMPROVE has only used IMPROVE_A TOR with blank correction.  
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Data processing 

We focus on silicon and EC in this paper. We selected EC over OC because most previous 

epidemiological or toxicological studies that considered carbon measurements focused on EC. 

We selected silicon over sulfur so we could highlight interesting features of the silicon data 

found in our exploratory analyses. See Vedal et al. (2013) for the full data description and 

exploratory analyses. To align with NPACT’s 2-week average integrated samples, we computed 

averages of daily CSN/IMPROVE data for the corresponding 2-week periods centered on every 

other Wednesday. We log-transformed (natural log) the 2-week averages after adding 1 to 

approximate a normal distribution. In sensitivity analyses we found our results were insensitive 

to the addition of a different constant, namely 0.1 times the average of each component (data not 

shown).  

Features affecting between-network comparability  

We focused on spatial coverage, filter analysis protocol, and sampling protocol as factors which 

may influence data comparability between the CSN, IMPROVE, and NPACT networks.  

Spatial coverage: Monitoring sites in the CSN and IMPROVE networks are located far from 

each other and typically comprise only one or a few sites in a city, whereas the NPACT 

monitoring sites were densely located within each MESA city region. The sparse spatial 

coverage of the regulatory monitoring data limits our ability to model PM2.5 component 

concentrations over space (Lippmann. 2009).  

Filter analysis protocol: Analytical methods for EC and OC differed within and between 

networks. In particular, CSN has historically used the NIOSH TOT method, whereas IMPROVE 

uses the IMPROVE_A TOR method. The two methods use different time/temperature analytical 
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protocols to measure fractions of EC and OC on quartz filters. Data discrepancies resulting from 

these method differences have been documented (Chow et al. 2001; Malm et al. 2011). 

Consequently, EPA decided to change the laboratory method for CSN sites to the IMPROVE_A 

TOR method beginning in May 2007 (U.S. EPA 2005b; U.S. EPA 2006). All core CSN sites 

simultaneously changed in May 2007, while the method change was phased in over time after 

that date at supplemental CSN sites. NPACT used the IMPROVE_A TOR method exclusively.  

Sampling protocol: The NPACT, CSN, and IMPROVE networks operated on different sampling 

schedules and used different sampling hardware. Whereas NPACT collected 2-week average 

samples, CSN/IMPROVE sites collected 24-hour average samples that were obtained every 3rd 

day at all IMPROVE sites and at most core CSN sites, and every 6th day at supplemental CSN 

sites. The use of different sampling devices with different pump flow rates and blank correction 

methods may also contribute to data inconsistencies among monitoring networks. 

Exploratory data analysis for data comparability 

To assess data comparability between networks, we performed exploratory analyses by 

generating graphical displays (maps, scatter plots, and time-series plots) and summary statistics. 

Sparse coverage in urban space 

We investigated the potential impact of the number, density, and locations of monitors within 

each area on spatio-temporal prediction model estimates by assessing city-specific spatial 

distributions of monitors and comparing estimated temporal patterns between networks. The 

temporal patterns were estimated by smoothing time-series data across monitoring sites. 
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Different filter analysis protocols 

We compared the two filter analysis methods for EC between the CSN and IMPROVE networks 

as well as within the CSN network. We compared pairs of daily average EC measurements 

collected from January 2000 to July 2007 at four co-located CSN and IMPROVE sites using the 

NIOSH TOT and IMPROVE_A TOR filter analysis methods, respectively. In addition, there 

were two months of overlap from early May to early July in 2007 when both NIOSH TOT and 

IMPROVE_A TOR methods were used at the same core CSN sites. We compared pairs of daily 

average EC measurements during the overlapping time period using two methods at the six core 

CSN sites co-located with NPACT fixed sites.  

Different sampling protocols 

Given that NPACT collected 2-week average measurements and CSN and IMPROVE collected 

24-hour samples every 3rd or 6th day, it was not clear whether CSN and IMPROVE data could 

reliably estimate 2-week averages and temporal trends. The majority of CSN and IMPROVE 

data available for NPACT were measurements taken every 6th day at supplemental CSN sites. 

There were relatively few network sites with data collect every 3rd day within 200 kilometers of a 

MESA city center, as there were only 54 core CSN sites in U.S. and IMPROVE sites are mostly 

distant from cities. Thus we investigated the importance of sampling frequency by making 

within-site comparisons at four of the six CSN sites co-located with NPACT fixed sites, that 

collected data every 3rd day. Specifically, we compared the smoothed temporal patterns of 2-

week average silicon estimates using data obtained from every 3rd day samples vs. a reduced 

subset of every 6th day samples. In addition to different sampling frequencies, the impact of 

differences in sampling hardware systems was compared at the all six co-located sites using pairs 
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of 2-week averages for EC and silicon from CSN and NPACT. The comparison for EC was 

restricted to the period during and after May 2007 when the IMPROVE_A TOR filter analysis 

method was adopted at core CSN sites. All six CSN sites co-located with NPACT fixed sites 

were core sites.  

Exposure prediction model 

The NPACT exposure prediction model aimed to predict 2-week average concentrations of PM2.5 

components at participant addresses by adopting the spatio-temporal modeling framework 

developed for the MESA Air study. Overall, NPACT monitoring sites provided reasonable 

spatial coverage of MESA cities (average of 3–10 sites/km for fixed and home-outdoor sites 

combined in each city). However, there were only 3–7 fixed NPACT sites providing 

continuously-collected data for each city (over four years for silicon or 18 months for EC), in 

contrast with the larger numbers of home-outdoor sites (87–116 per city) operating for only 1–3 

2-week periods. Supplemental Material, Figure S1 provides an illustration of the spatial and 

temporal resolution of the NPACT monitoring design in the Los Angeles area as an example. 

The spatio-temporal model was designed to effectively utilize such highly imbalanced 

monitoring data. Applications of the city-specific spatio-temporal models for PM2.5, NO2, NOX 

and black carbon in MESA Air have been described previously (Keller et al. 2014; Lindstrom et 

al. 2013a; Sampson et al. 2011; Szpiro et al. 2011) in situations where regulatory monitoring data 

were used to supplement the MESA Air campaign. The long time series of the regulatory 

monitoring data contributed to characterization of temporal features, while the MESA Air 

monitoring data enhanced the model at a relatively fine spatial scale. The model is available for 

implementation in the R package “SpatioTemporal” (Lindstrom et al. 2013a; Lindstrom et al. 

2013b). In brief, this model assumes that 2-week average space-time concentrations consist of 
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site-specific long-term means, site-specific temporal trends, and spatio-temporal residuals. Long-

term means and temporal trends vary over space as characterized by geographical predictors and 

spatial correlation structures. Temporal trends include spatially-homogenous temporal trend 

functions scaled by spatially-varying trend coefficients. Temporal trend functions are derived 

from a singular value decomposition of the data at sites with long time series before model fitting. 

Spatio-temporal residuals are assumed to be temporally independent but spatially dependent.  

Exploration of possible spatio-temporal modeling approaches 

We explored the possibility of fitting three approaches to develop city-specific spatio-temporal 

prediction models for silicon and EC based on our experience developing the MESA Air spatio-

temporal model for PM2.5 (Keller et al. 2014). For this exploration, we used results of descriptive 

analyses described in the previous section (“Exploratory data analysis for data comparability”) 

and performed additional data analyses. First, we considered the full spatio-temporal model 

directly using all available PM2.5 component data from the regulatory and NPACT monitoring 

networks as in Keller et al. (2014) (Approach 1). In the PM2.5 spatio-temporal modeling work, 

the regulatory and MESA Air data were highly correlated and thus combined allowing this rich 

dataset to be used for the full model. The spatial density of PM2.5 component regulatory 

monitoring sites and the data comparability between networks are the criteria we considered to 

indicate the feasibility of Approach 1. In the event that the multiple sources of PM2.5 component 

data were insufficiently compatible to combine, NPACT data alone were too limited to support 

the full spatio-temporal model. To deal with such a case, we considered Approach 2 as a 

simplified version of the spatio-temporal model based only on NPACT data that assumed one 

temporal trend and without any spatial dependence structure. One homogenous temporal trend in 

each city is a strong assumption. We investigated whether this assumption was appropriate by 
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comparing a single temporal pattern estimated using fixed site data for four years or 18 months 

with time-series data across about 50 home-outdoor sites in each city. Finally, we considered 

using the temporal trend functions estimated from other pollutant time series, such as PM2.5 and 

NOX, instead of those from PM2.5 components in the full spatio-temporal model framework 

(Approach 3). These pollutants have longer time series of data at many more regulatory 

monitoring sites than those of PM2.5 components in NPACT. Fitting the full spatio-temporal 

models using substituted trend functions in Approach 3 would be justified when there is good 

agreement between the two trend functions (i.e. the PM2.5/NOX and the PM2.5 component trend 

functions). We compared the two temporal patterns between EC/silicon in NPACT and 

PM2.5/NOX in EPA AQS to assess the feasibility of Approach 3. Daily PM2.5 and NOX data 

measured at the EPA monitoring sites located within 200 kilometers of the six MESA cities were 

obtained from the AQS database and converted to 2-week averages. 

Results 

Table 1 summarizes important characteristics of the PM2.5 component monitoring data across the 

NPACT, CSN, and IMPROVE networks. The table highlights three aspects of the regulatory and 

NPACT monitoring data that may make it difficult to combine the multiple sources in one 

unified spatio-temporal model: sparse spatial coverage, analysis method differences for carbon 

data, and different sampling protocols.  

Data compatibility between CSN, IMPROVE and NPACT networks 

Sparse coverage in urban space 

There were 6–27 CSN and 1–8 IMPROVE monitoring sites within 200 kilometers of each city 

center (Figure 1 and Table 2). However, MESA participant homes were clustered near the center 
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of each area, while only a few CSN sites were close to the city center and the majority of 

IMPROVE sites were located in rural areas away from participants. Supplemental Material, 

Figure S2 shows estimated smoothed temporal patterns for the CSN and IMPROVE sites in six 

city areas. The temporal patterns for EC at 8 IMPROVE sites were different from those observed 

at 6 CSN sites in Los Angeles. There were also differences between the temporal patterns for 

silicon across networks, but these were less striking. In the other five city regions, the temporal 

patterns for EC were more or less heterogeneous depending on city, whereas those for silicon 

were relatively consistent in all cities.  

Different filter analysis protocols  

While Figure 2 shows that at four co-located sites there was moderate to high agreement between 

protocols (correlation coefficients = 0.79–0.91), these are not consistently and sufficiently high 

to conclude that the data are exchangeable in some city areas for daily average measurements of 

EC collected from the CSN vs. IMPROVE networks before the method change in May 2007. 

Supplemental Material, Figure S3 compares 24-hour average measurements of EC between the 

NIOSH TOT and IMPROVE_A TOR filter analysis methods for the two-month period of 

overlap at one CSN site in each MESA city region. In Chicago and New York the two methods 

had obvious systematic differences indicated by best-fit lines with negative intercepts, even 

though they were highly correlated; correlation coefficients were 0.94 and 0.97, due in part to the 

large variability between measurements in these cities. In contrast, the other cities displayed 

weaker systematic differences and had moderate correlations (0.71–0.84).  
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Different sampling protocols 

Table 2 indicates numbers of CSN and IMPROVE sites by sampling schedule. Less than half of 

the CSN sites (the core CSN sites) and all the IMPROVE sites sampled PM2.5 components every 

3rd day, while more than half of the CSN sites (the supplemental sites) sampled every 6th day. 

Smoothed temporal patterns for 2-week averages of silicon based on CSN data collected at four 

sites co-located with NPACT fixed sites generally did not vary greatly when based on data 

collected every 6th day versus every 3rd day at the same site, although a few local differences 

were evident (Figure 3). Correlations between 2-week average EC concentrations measured 

during May 2007–August 2008 at co-located NPACT fixed sites and CSN sites (using the 

IMPROVE_A TOR filter analysis method) in each city were relatively low (0.27–0.62) (Figure 

4). In addition to NPACT measurements being generally higher than CSN measurements in all 

cities, there were non-systematic differences indicated by some measurements being far from 

best-fit lines between the two networks. Time-series plots with smoothed temporal patterns of 

the same data used in Figure 4 show local differences over time (Supplemental Material, Figure 

S4). Supplemental Material, Figures S5 and S6 show that silicon measurements are more 

comparable than EC with higher correlation coefficients of 0.56 to 0.78.  

Possible exposure modeling approaches 

Approach 1: Full spatio-temporal models combining the CSN/IMPROVE and NPACT data  

The regulatory monitoring data for PM2.5 components in each city region within a 200 kilometer 

boundary (7–32 sites) were more limited than those for other pollutants such as PM2.5 in the 

much smaller area within 75 kilometers of the city center (16–45 sites) (Table 2 and 

Supplemental Material, Table S1). The descriptive analyses in the previous section (“Data 
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compatibility between CSN, IMPROVE and NPACT networks”) showed evidence of differences 

related to filter analysis methods and sampling protocols (Figures 2 and 4 and Supplemental 

Material, Figures S4, S5, and S6). Thus, we concluded that NPACT data should not be combined 

with CSN and IMPROVE data to generate full spatio-temporal models for PM2.5 components for 

each city.  

Approach 2: Simplified spatio-temporal models based on the NPACT data only 

Based on a graphical analysis comparing the single temporal pattern from NPACT fixed site data 

with measurements from the home-outdoor sites in each city (as illustrated for Los Angeles and 

Chicago in Supplemental Material, Figure S7), we concluded that the single smoothed temporal 

patterns generally represented the temporal variability across home sites. 

Approach 3: Full spatio-temporal models using another pollutant 

From the comparison of estimated temporal patterns for PM2.5 and NOX based on EPA site data 

to those for EC and silicon based on fixed site NPACT data, we concluded that the patterns did 

not tend to be consistent enough to support using other pollutant data to generate full spatio-

temporal models for PM2.5 components (i.e. Approach 3). For example, temporal patterns for EC 

and silicon differed from those for PM2.5 and NOX particularly in the Minneapolis and St. Paul 

area (Supplemental Material, Figure S8).  

Discussion 

We explored the features of regulatory and NPACT monitoring data for EC and silicon relevant 

to our goal of combining all available exposure data in spatio-temporal prediction models to 

investigate health effects of long-term exposures to PM2.5 chemical components in the NPACT 
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study. The small number of CSN and IMPROVE regulatory monitoring sites deployed in 

NPACT study areas limited the amount of additional data available for modeling. In addition, we 

found insufficient between-network consistency to combine CSN, IMPROVE, and NPACT data 

in one spatio-temporal model. These findings led us to conclude that we should develop spatio-

temporal models using NPACT monitoring data only. Given the limited space-time data in 

NPACT, the resulting spatio-temporal models needed to be simplified by assuming only a single 

temporal time trend in each study area. 

We found inconsistencies between measurements from the NPACT and regulatory monitoring 

networks for both EC and silicon, even when both networks used the same filter analysis 

methods. Exploration of possible factors resulting in the inconsistency will help future studies 

that perform study-specific monitoring campaigns for PM2.5 components to supplement 

regulatory data for exposure prediction and subsequent health analysis. For EC, we believe that 

the inconsistency is primarily due to differences in sampling periods of 2-week vs. daily samples 

in NPACT and CSN/IMPROVE, respectively (See “Sampling Periods and EC measurements” in 

the Supplemental Material for detailed information). In addition to the sampling period, other 

differences in carbon sampling between the networks could have contributed to inconsistencies 

in the data. NPACT used a blank correction protocol based on backup quartz filters, whereas 

CSN did not apply blank corrections. Filter handling, transport, and storage in NPACT may also 

have introduced artifacts and resulted in differences in measurements between the two networks, 

despite our extensive quality assurance and control procedures. However, the good agreement 

between total carbon measurements in the CSN and NPACT networks (Vedal et al. 2013) 

suggests that the inconsistency of EC and OC measures between the two networks is more likely 

driven by the EC-OC split rather than the sampling and blank correction protocols.  
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Differences between silicon measurements from co-located NPACT and CSN monitors placed a 

few meters away from each other might be driven by microscale local plume gradients. Another 

possible explanation could be the use of different sampling equipment. Contamination of the 

filters by the silicon grease used in the HPEM sampler can result in increased silicon 

concentrations. However, grease contamination usually appears as very large spikes in 

contaminated samples compared with other samples; such spikes were not observed in our data 

(data not shown). Consistency between PM2.5 and sulfur concentrations measured by the co-

located monitors (data not shown) suggest that the Teflon filters used by the two networks 

generally sampled the same fine particles.  

Some studies have developed calibration models to allow combined analysis of data collected by 

CSN and IMPROVE networks. White (2008) and Malm et al. (2011) used elemental, organic, 

and total carbon data in 2005 and 2006 at 7–12 co-located urban CSN and IMPROVE sites over 

the continental U.S. to estimate relationships of EC between the two networks. Their IMPROVE-

adjusted EC at CSN sites was highly correlated with EC at co-located IMPROVE sites (R2 = 

0.80–0.94). However, these calibrations were based on data collected at a relatively small 

number of co-located sites during a short time period. More research is needed to determine 

whether these calibrations can be applied to other areas or years.  

Unlike our study, other published studies of the health effects of long-term average PM2.5 

component concentrations have relied exclusively on regulatory monitoring data. Ostro et al. 

(2010) used CSN data and assigned PM2.5 components at the nearest monitors to participant 

homes in California. Bergen et al. (2013) used CSN and IMPROVE data to build universal 

kriging models across the U.S. Both studies used long-term averages and developed purely 
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spatial models in large spatial domains. In order to take advantage of the extensive project-based 

monitoring campaigns designed to represent fine-scale spatial variability of PM2.5 component 

concentrations across the target cohort residences, the NPACT options were to either use the 

NPACT data alone or to combine the NPACT data with regulatory monitoring data.  

Our findings suggest that it may be difficult to transfer existing spatio-temporal prediction 

modeling approaches developed for PM2.5 (Keller et al. 2014; Paciorek et al. 2009; Sampson et al. 

2011; Yanosky et al. 2009) to modeling PM2.5 components. There are several features of the 

PM2.5 component data that make a direct transfer difficult. While the regulatory PM2.5 

monitoring data were collected under consistent protocols over a relatively long time period 

since the 1990s and across about 1,000 monitoring locations in the U.S. (U.S. EPA 2004; Hand 

et al. 2011), this is not the case for PM2.5 component data. Furthermore, there is reasonable 

agreement for PM2.5, unlike for PM2.5 components, between these regulatory monitoring data and 

the data collected by community-based campaigns such as MESA Air (correlation coefficients = 

0.77–0.96 at six co-located sites in six MESA city regions; data not shown). Thus, while Keller 

et al. (2014) and Sampson et al. (2011) were able to combine regulatory and MESA Air 

monitoring data in city-specific spatio-temporal predictive models of PM2.5, we were unable to 

take the same approach in NPACT. Instead, we used only the NPACT data in PM2.5 component 

prediction modeling in order to avoid introducing heterogeneity and bias into our results. 

Given widespread scientific interest in understanding the associations between long-term air 

pollution exposure and health for multiple pollutants, it is important that we also acquire 

sufficient understanding of monitoring data features which may in turn affect exposure 

predictions and the resulting health effect estimates. Methodological research has shown that 
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features of the underlying exposure surface, exposure assessment design, and approaches to 

exposure modeling may all impact health effect estimates (Gryparis et al. 2009; Kim et al. 2009; 

Szpiro et al. 2011; Szpiro and Paciorek 2013). This study adds monitoring data from multiple 

sources as another feature that could affect exposure modeling for inference about health effects.  

Conclusions 

U.S. regulatory monitoring data for PM2.5 components measured at CSN and IMPROVE sites are 

a potentially rich data resource to be used alone or combined with project-based monitoring data 

for the study of health effects of PM2.5 components. However, the sparse spatial coverage of 

these networks and differences across networks in the analysis and sampling protocols for some 

PM2.5 components could lead to biased or imprecise findings in health analyses, particularly if 

the data from different sources are combined without careful consideration. Future studies of 

long-term average concentrations of PM2.5 components and health need to assess exposure data 

characteristics before designing their own monitoring campaigns and developing exposure 

prediction models. 
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Table 1. Major contrasting characteristics between NPACT, CSN, and IMPROVE networks. 

Characteristics  NPACT CSN IMPROVE 
Sampling design Location of sites 

Spatial density  
in MESA city areas 

Urban 
Dense  

(92-112 sites in each city) 

Urban 
Sparse  
(8-27) 

Rural 
Sparse  
(1-8) 

Monitoring period 
 

Sampling schedule 

2005-2009 
 

2-week average 

Since 1999 
24-hour average: 

1 in 3 or 6 day 

Since 1987 
24-hour average: 

1 in 3 day 
Filter analysis  

method  
Analysis method  

for elements 
Analysis method  

for carbon 

XRFa 

 

IMPROVE_A TORa 

XRF 
 

NIOSH TOT 
IMPROVE_A TORb 

XRF 
 

IMPROVE_A TOR 

Blank correction using  
backup quartz filter 

Yes 
 

No 
 

Yes 
 

Sampling protocol Sampler typec 
for elements 

HPEM 
 

Met One SASSd, Andersen RAAS, 
URG MASS, and R&P  

IMPROVE 
 

Sampler typec 
for carbon 

HPEM 
 

Met One SASSd Andersen RAAS, 
URG MASS, R&P, and 

URG 3000Nb 

IMPROVE 

Pump flow rate 1.8 L/min 6.7 ~ 16.7 L/min 
22.8 L/minb 

22.7 L/min 

aXRF analysis was performed at the Cooper Environmental Services of Portland, Oregon and IMPROVE_A TOR analysis was performed at the 

Sunset laboratory Inc. of Tigard, Oregon. bNew carbon sampling and analysis protocols have been implemented at core CSN sites since May 2007. 
cHPEM = Harvard Personal Environmental Monitor; Met One SASS = Met One Speciation Air Sampler System; Andersen RAAS = Andersen 

Reference Ambient Air Sampler; URG = University Research Glassworks; R & P = Rupprecht and Patahnick. dUsed in about 75 % of CSN sites 

in 2006.  
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Table 2. Number of sites with long-term monitoring data available within 200 km of six MESA city areas between 1999 and 2009. 

Area Totalb 

Regulatory 
CSN 
Total 

Regulatory 
CSN 
3-day 

Regulatory 
CSN 
6-day 

Regulatory 
IMPROVEa 

Total (3-day) 

NPACT 
Fixed 

Total (14 day avg) 

NPACT 
Home-outdoor 

Total (14 day avg) 
Los Angeles 21 (137)c 6 3 3 8 7 116 

Chicago 23 (122) 15 4 11 1 7 99 
Minneapolis-St. Paul 10 (114) 6 2 4 1 3 104 

Baltimored 37 (124) 27 8 19 5 5 87 
New Yorkd 31 (138) 25 14 11 3 3 107 

Winston-Salem 19 (111) 12 2 10 3 4 92 
aThe numbers of IMPROVE sites shown in Figure 1 are 7, 0, 1, 2, 2, and 3. One to three IMPROVE sites in four cities are not shown in Figure 2 

because they are hidden behind many other sites in the city center areas or at sites co-located with CSN sites. bCo-located sites are counted as 

multiple sites (two for CSN and NPACT or CSN and IMPROVE, and three for CSN, IMPROVE, and NPACT). cNumber of sites excluding 

NPACT-MESA Air home sites (Number of sites including home sites). d13 sites appear in both Baltimore and New York due to overlap of regions: 

12 CSN (3 for every 3rd-day and 9 for every 6th day sampling sites, respectively) and 1 IMPROVE. 
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Figure Legends 

Figure 1. Locations of CSN, IMPROVE, and NPACT monitoring sites for PM2.5 components within 200 kilometers from city centers 

in six MESA city areas (Each map is restricted to a smaller area including all monitoring sites than the 200 kilometer buffer area from 

the city center; One to three IMPROVE sites in four cities are not shown because they are hidden behind many other sites in the city 

center areas or with co-located CSN sites.). 

Figure 2. Scatter plots of log-transformed every 3rd day measurements of EC (µg/m3) between CSN and IMPROVE at four co-located 

sites in Los Angeles, Chicago, Baltimore, and New York from January 2000 through July 2007.  

Figure 3. Time series plots of log-transformed 2-week averages of silicon between every 3rd day and 6th day measurements at the 

same four CSN sites co-located with four NPACT fixed sites in Chicago, Minneapolis-St. Paul, Baltimore, and New York from 1999 

to 2009. 

Figure 4. Scatter plots of log-transformed 2-week averages of EC (µg/m3) for the overlapping period from May 2007 through August 

2008 between co-located CSN and NPACT fixed sites in each of six MESA city areas.  
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Figure 1. 
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Figure 2. 
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Figure 3. 
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Figure 4. 
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